2,439 research outputs found

    New Acrylic Monolithic Carbon Molecular Sieves for O2/N2 and CO2/CH4 Separations

    Get PDF
    The modification of activated carbon fibres prepared from a commercial textile acrylic fibre into materials with monolithic shape using phenolic resin as binder was studied. The molecular sieving properties for the gas separations CO2/CH4 and O2/N2 were evaluated from the gas uptake volume and selectivity at 100 s contact time taken from the kinetic adsorption curves of the individual gases. The pseudo-first order rate constant was also determined by the application of the LDF model. The samples produced show high CO2 and O2 rates of adsorption, in the range 3–35 · 10_3 s_1, and in most cases null or very low adsorption of CH4 and N2 which make them very promising samples to use in PSA systems, or similar. Although the selectivity was very high, the adsorption capacity was low in certain cases. However, the gas uptake in two samples reached 23 cm3 g_1 for CO2 and 5 cm3 g_1 for O2, which can be considered very good. The materials were heat-treated using a microwave furnace, which is a novel and more economic method, when compared with conventional furnaces, to improve the molecular sieves properties

    tabAnti-HER2 (erbB-2) oncogene effects of phenolic compounds directly isolated from commercial Extra-Virgin Olive Oil (EVOO)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The effects of the olive oil-rich Mediterranean diet on breast cancer risk might be underestimated when HER2 (<it>ERB</it>B2) oncogene-positive and HER2-negative breast carcinomas are considered together. We here investigated the anti-HER2 effects of phenolic fractions directly extracted from Extra Virgin Olive Oil (EVOO) in cultured human breast cancer cell lines.</p> <p>Methods</p> <p>Solid phase extraction followed by semi-preparative high-performance liquid chromatography (HPLC) was used to isolate phenolic fractions from commercial EVOO. Analytical capillary electrophoresis coupled to mass spectrometry was performed to check for the composition and to confirm the identity of the isolated fractions. EVOO polyphenolic fractions were tested on their tumoricidal ability against HER2-negative and HER2-positive breast cancer <it>in vitro </it>models using MTT, crystal violet staining, and Cell Death ELISA assays. The effects of EVOO polyphenolic fractions on the expression and activation status of HER2 oncoprotein were evaluated using HER2-specific ELISAs and immunoblotting procedures, respectively.</p> <p>Results</p> <p>Among the fractions mainly containing the <it>single phenols </it>hydroxytyrosol and tyrosol, the <it>polyphenol acid </it>elenolic acid, the <it>lignans </it>(+)-pinoresinol and 1-(+)-acetoxypinoresinol, and the <it>secoiridoids </it>deacetoxy oleuropein aglycone, ligstroside aglycone, and oleuropein aglycone, all the major EVOO polyphenols (<it>i.e. </it>secoiridoids and lignans) were found to induce strong tumoricidal effects within a micromolar range by selectively triggering high levels of apoptotic cell death in HER2-overexpressors. Small interfering RNA-induced depletion of HER2 protein and lapatinib-induced blockade of HER2 tyrosine kinase activity both significantly prevented EVOO polyphenols-induced cytotoxicity. EVOO polyphenols drastically depleted HER2 protein and reduced HER2 tyrosine autophosphorylation in a dose- and time-dependent manner. EVOO polyphenols-induced HER2 downregulation occurred regardless the molecular mechanism contributing to HER2 overexpression (<it>i.e</it>. naturally by gene amplification and ectopically driven by a viral promoter). Pre-treatment with the proteasome inhibitor MG132 prevented EVOO polyphenols-induced HER2 depletion.</p> <p>Conclusion</p> <p>The ability of EVOO-derived polyphenols to inhibit HER2 activity by promoting the proteasomal degradation of the HER2 protein itself, together with the fact that humans have safely been ingesting secoiridoids and lignans as long as they have been consuming olives and OO, support the notion that the stereochemistry of these phytochemicals might provide an excellent and safe platform for the design of new HER2-targeting agents.</p

    Different fatty acid metabolism effects of (−)-epigallocatechin-3-gallate and C75 in adenocarcinoma lung cancer

    Get PDF
    Background Fatty acid synthase (FASN) is overexpressed and hyperactivated in several human carcinomas, including lung cancer. We characterize and compare the anti-cancer effects of the FASN inhibitors C75 and (−)-epigallocatechin-3-gallate (EGCG) in a lung cancer model. Methods We evaluated in vitro the effects of C75 and EGCG on fatty acid metabolism (FASN and CPT enzymes), cellular proliferation, apoptosis and cell signaling (EGFR, ERK1/2, AKT and mTOR) in human A549 lung carcinoma cells. In vivo, we evaluated their anti-tumour activity and their effect on body weight in a mice model of human adenocarcinoma xenograft. Results C75 and EGCG had comparable effects in blocking FASN activity (96,9% and 89,3% of inhibition, respectively). In contrast, EGCG had either no significant effect in CPT activity, the rate-limiting enzyme of fatty acid β-oxidation, while C75 stimulated CPT up to 130%. Treating lung cancer cells with EGCG or C75 induced apoptosis and affected EGFR-signaling. While EGCG abolished p-EGFR, p-AKT, p-ERK1/2 and p-mTOR, C75 was less active in decreasing the levels of EGFR and p-AKT. In vivo, EGCG and C75 blocked the growth of lung cancer xenografts but C75 treatment, not EGCG, caused a marked animal weight loss. Conclusions In lung cancer, inhibition of FASN using EGCG can be achieved without parallel stimulation of fatty acid oxidation and this effect is related mainly to EGFR signaling pathway. EGCG reduce the growth of adenocarcinoma human lung cancer xenografts without inducing body weight loss. Taken together, EGCG may be a candidate for future pre-clinical development

    Olive oil's bitter principle reverses acquired autoresistance to trastuzumab (Herceptinâ„¢) in HER2-overexpressing breast cancer cells

    Get PDF
    [Background] A low incidence of breast cancer in the Mediterranean basin suggests that a high consumption of Extra Virgin Olive Oil (EVOO) might confer this benefit. While the anti-HER2 oncogene effects of the main ω-9 fatty acid present in EVOO triacylglycerols (i.e., oleic acid) have been recently described, the anti-breast cancer activities of EVOO non-glyceridic constituents -which consist of at least 30 phenolic compounds-, remained to be evaluated. [Methods] Semi-preparative HPLC was used to isolate EVOO polyphenols (i.e., tyrosol, hydroxytyrosol, oleuropein). Both the anti-proliferative and the pro-apoptotic effects of EVOO phenolics were evaluated by using MTT-based quantification of metabolically viable cells and ELISA-based detection of histone-associated DNA fragments, respectively. The nature of the interaction between oleuropein aglycone and the anti-HER2 monoclonal antibody trastuzumab (Herceptin™) was mathematically evaluated by the dose-oriented isobologram technique. HER2-specific ELISAs were employed to quantitatively assess both the basal cleavage of the HER2 extracellular domain (ECD) and the expression level of total HER2. The activation status of HER2 was evaluated by immunoblotting procedures using a monoclonal antibody specifically recognizing the tyrosine phosphorylated (Phosphor-Tyr1248) form of HER2. [Results] Among EVOO polyphenols tested, oleuropein aglycone was the most potent EVOO phenolic in decreasing breast cancer cell viability. HER2 gene-amplified SKBR3 cells were ~5-times more sensitive to oleuropein aglycone than HER2-negative MCF-7 cells. Retroviral infection of the HER2 oncogene in MCF-7 cells resulted in a "SKBR3-assimilated" phenotype of hypersensitivity to oleuropein aglycone. An up to 50-fold increase in the efficacy of trastuzumab occurred in the presence of oleuropein aglycone. A preclinical model of acquired autoresistance to trastuzumab (SKBR3/Tzb100 cells) completely recovered trastuzumab sensitivity (> 1,000-fold sensitization) when co-cultured in the presence of oleuropein aglycone. Indeed, the nature of the interaction between oleuropein aglycone and trastuzumab was found to be strongly synergistic in Tzb-resistant SKBR3/Tzb100 cells. Mechanistically, oleuropein aglycone treatment significantly reduced HER2 ECD cleavage and subsequent HER2 auto-phosphorylation, while it dramatically enhanced Tzb-induced down-regulation of HER2 expression. [Conclusion] Olive oil's bitter principle (i.e., oleuropein aglycone) is among the first examples of how selected nutrients from an EVOO-rich "Mediterranean diet" directly regulate HER2-driven breast cancer disease.JAM is the recipient of a Basic, Clinical and Translational Research Award (BCTR0600894) from the Susan G. Komen Breast Cancer Foundation (Texas, USA). This work was also supported by the Instituto de Salud Carlos III (Ministerio de Sanidad y Consumo, Fondo de Investigación Sanitaria -FIS-, Spain, Grants CP05-00090 and PI06-0778 to JAM, and Grant RD06-0020-0028 to JAM, RC and JB)

    De novo fatty-acid synthesis and related pathways as molecular targets for cancer therapy

    Get PDF
    Enhanced lipid biosynthesis is a characteristic feature of cancer. Deregulated lipogenesis plays an important role in tumour cell survival. These observations suggest that enzymes in the lipid synthesis pathway would be rational therapeutic targets for cancer. To this end, we review the enzymes in de novo fatty-acid synthesis and related pathways

    Plasmodium falciparum malaria and Parvovirus B19; a case of acute co-infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Co-infection with Plasmodium falciparum malaria and Parvovirus B19 in adults is an extremely rare occurrence and, apparently, only one case has been previously reported. Herein we describe a case of acute co-infection with severe anemia and renal failure.</p> <p>Case presentation</p> <p>The patient was a 34-year-old African man presenting myalgia, fatigue, headache, anemia and hepatosplenomegaly. A thin peripheral smear showed Plasmodium falciparum trophozoites and the patient was treated with oral mefloquine. After an initial amelioration, fever, fatigue and myalgia reappeared, the anemia worsened and there was evidence of acute renal failure. No malarial parasites were found with a blood smear. A bone marrow aspiration showed marked erythroid hypoplasia. Parvovirus B19-specific IgM and IgG and viremia were positive. The patient was treated with steroids and blood cell transfusions. After ten days, anemia and renal failure progressively decreased. When last seen, the patient was asymptomatic and the blood values were within the normal range.</p> <p>Conclusions</p> <p>The diagnosis of Parvovirus B19 acute infection should be considered in any case of persistent severe anemia and/or renal failure, even in clinical conditions that are well-known causes of anemia and renal failure, such as malaria.</p

    Transphosphorylation of kinase-dead HER3 and breast cancer progression: a new standpoint or an old concept revisited?

    Get PDF
    Although neither kinase-dead human epidermal growth factor receptor (HER)3 nor orphan HER2 can be activated by HER-related ligands on their own, the formation of HER2/HER3 heterodimers creates the most mitogenic and transforming receptor complex within the HER (erbB) family of transmembrane receptor tyrosine kinases. The incorporation of markers such as HER3 transactivation, HER2/HER3 dimer, or others that may provide information regarding the level of HER pathway engagement has been demonstrated to allow identification of patients who respond to or escape HER-targeted therapies. Pioneering studies showed that high expression of kinase-dead HER3 can predict early escape from the anti-HER2 monoclonal antibody trastuzumab. Also, the growth-inhibitory effects of HER1/2 tyrosine kinase inhibitors (TKIs) were previously found to be attenuated in the presence of heregulin, which is a high-affinity combinatorial ligand for HER3. All of these concepts are being revisited with respect to the efficacy of HER family TKI therapies; in particular, HER3 signalling buffered against incomplete inhibition of HER2 kinase activity has been suggested to be the mechanism that allows HER2 over-expressing breast cancer cells to escape HER TKIs. It remains to be elucidated whether reactivation of HER3 signalling can also account for the poor efficacy of HER TKIs in treating breast carcinomas that contain low overall levels of HER2 receptors. However, it appears that regardless of the mechanism that triggers the formation of oncogenic HER2/HER3 heterodimers (HER2 over-expression or overall low HER2 but high levels of the HER3 ligand heregulin), HER3 transphosphorylation is a common response of breast cancer cells upon treatment with current inhibitors of the HER receptor tyrosine kinase network. Because kinase-inactive HER3 is not presently an amenable target for forthcoming HER TKIs, molecular approaches that can efficiently block heregulin-triggered HER3 transactivation or nucleocytoplasmic trafficking of heregulin might offer novel strategies with which to manage HER-driven breast cancer disease
    • …
    corecore